Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652237

RESUMO

Expanding in both scope and scale, ecosystem restoration needs to embrace complex social-ecological dynamics. To help scientists and practitioners navigate ever new demands on restoration, we propose the "social-ecological ladder of restoration ambition" as a conceptual model to approach dynamically shifting social and ecological restoration goals. The model focuses on three dynamic aspects of restoration, namely degrading processes, restoration goals and remedial actions. As these three change through time, new reinforcing and balancing feedback mechanisms characterize the restoration process. We illustrate our model through case studies in which restoration has become increasingly ambitious through time, namely forest landscape restoration in Rwanda and grassland restoration in Germany. The ladder of restoration ambition offers a new way of applying social-ecological systems thinking to ecosystem restoration. Additionally, it raises awareness of social-ecological trade-offs, power imbalances and conflicting goals in restoration projects, thereby laying an important foundation for finding more practicable and fairer solutions.

2.
Front Plant Sci ; 15: 1346729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504892

RESUMO

In a pot experiment, we investigated synergistic interaction of N and P fertilisation on barley biomass (Hordeum vulgare) on both shoot and root level with the aim to determine whether N-P interaction would be the same for all levels of N and P fertilisation. We further aimed to determine whether there was a critical level of N and/or P fertilisation rate, above which, a decrease in resource allocation to roots (as nutrient availability increased) could be demonstrated. Barley plants were grown from seed on a nutrient poor substrate and subjected to a two-way NxP fertilisation gradient using a modified Hoagland fertilisation solution. We observed N-P interactions in shoot and root biomass, and N and P use-efficiencies. A synergistic response in biomass was observed only above a critical level of P fertilisation when P was not limiting growth. Furthermore, we found that the same incremental increase in N:P ratio of applied fertiliser elicited different responses in shoot and root biomass depending on P treatment and concluded that barley plants were less able to cope with increasing stoichiometric imbalance when P was deficient. We provide, for the first time, stoichiometric evidence that critical levels for synergistic interactions between N-P may exist in crop plants.

3.
Nat Commun ; 13(1): 7752, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517483

RESUMO

Numerous studies have demonstrated that biodiversity drives ecosystem functioning, yet how biodiversity loss alters ecosystems functioning and stability in the long-term lacks experimental evidence. We report temporal effects of species richness on community productivity, stability, species asynchrony, and complementarity, and how the relationships among them change over 17 years in a grassland biodiversity experiment. Productivity declined more rapidly in less diverse communities resulting in temporally strengthening positive effects of richness on productivity, complementarity, and stability. In later years asynchrony played a more important role in increasing community stability as the negative effect of richness on population stability diminished. Only during later years did species complementarity relate to species asynchrony. These results show that species complementarity and asynchrony can take more than a decade to develop strong stabilizing effects on ecosystem functioning in diverse plant communities. Thus, the mechanisms stabilizing ecosystem functioning change with community age.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Plantas , Biomassa
4.
Ecol Appl ; 32(7): e2649, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560687

RESUMO

Restoration ecology commonly seeks to re-establish species of interest in degraded habitats. Despite a rich understanding of how succession influences re-establishment, there are several outstanding questions that remain unaddressed: are short-term abundances sufficient to determine long-term re-establishment success, and what factors contribute to unpredictable restorations outcomes? In other words, when restoration fails, is it because the restored habitat is substandard, because of strong competition with invasive species, or alternatively due to changing environmental conditions that would equally impact established populations? Here, we re-purpose tools developed from modern coexistence theory to address these questions, and apply them to an effort to restore the endangered Contra Costa goldfields (Lasthenia conjugens) in constructed ("restored") California vernal pools. Using 16 years of data, we construct a population model of L. conjugens, a species of conservation concern due primarily to habitat loss and invasion of exotic grasses. We show that initial, short-term appearances of restoration success from population abundances is misleading, as year-to-year fluctuations cause long-term population growth rates to fall below zero. The failure of constructed pools is driven by lower maximum growth rates compared with reference ("natural") pools, coupled with a stronger negative sensitivity to annual fluctuations in abiotic conditions that yield decreased maximum growth rates. Nonetheless, our modeling shows that fluctuations in competition (mainly with exotic grasses) benefit L. conjugens through periods of competitive release, especially in constructed pools of intermediate pool depth. We therefore show how reductions in invasives and seed addition in pools of particular depths could change the outcome of restoration for L. conjugens. By applying a largely theoretical framework to the urgent goal of ecological restoration, our study provides a blueprint for predicting restoration success, and identifies future actions to reverse species loss.


Assuntos
Asteraceae , Ecossistema , Espécies Introduzidas , Plantas , Poaceae , Estações do Ano
5.
Ecol Appl ; 31(6): e02378, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988274

RESUMO

Arbuscular mycorrhizal (AM) fungi, a group of widespread fungal symbionts of crops, could be important in driving crop yield across crop rotations through plant-soil feedbacks (PSF). However, whether preceding crops have a legacy effect on the AM fungi of the subsequent crop is poorly known. We set up an outdoor mesocosm crop rotation experiment that consisted of a first phase growing either one of four pre-crops establishing AM and/or rhizobial symbiosis or not (spring barley, faba bean, lupine, canola), followed by an AM crop, winter barley. After the pre-crop harvest, carbon-rich organic substrates were applied to test whether it attenuated, accentuated or modified the effect of pre-crops. The pre-crop mycorrhizal status, but not its rhizobial status, affected the richness and composition of AM fungi, and this difference, in particular community composition, persisted and increased in the roots of winter barley. The effect of a pre-crop was driven by its single symbiotic group, not its mixed symbiotic group and/or by a crop-species-specific effect. This demonstrates that the pre-crop symbiotic group has lasting legacy effects on the AM fungal communities and may steer the AM fungal community succession across rotation phases. This effect was accentuated by sawdust amendment, but not wheat straw. Based on the previous observation of decreased crop yield after AM pre-crops, our findings suggest negative PSF at the level of the plant symbiotic group driven by a legacy effect of crop rotation history on AM fungal communities, and that a focus on crop symbiotic group offers additional understanding of PSF.


Assuntos
Hordeum , Micobioma , Micorrizas , Raízes de Plantas , Solo , Microbiologia do Solo , Simbiose
6.
Plant Cell Environ ; 44(4): 1215-1230, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33455010

RESUMO

Soil legacies play an important role for the creation of priority effects. However, we still poorly understand to what extent the metabolome found in the soil solution of a plant community is conditioned by its species composition and whether soil chemical legacies affect subsequent species during assembly. To test these hypotheses, we collected soil solutions from forb or grass communities and evaluated how the metabolome of these soil solutions affected the growth, biomass allocation and functional traits of a forb (Dianthus deltoides) and a grass species (Festuca rubra). Results showed that the metabolomes found in the soil solutions of forb and grass communities differed in composition and chemical diversity. While soil chemical legacies did not have any effect on F. rubra, root foraging by D. deltoides decreased when plants received the soil solution from a grass or a forb community. Structural equation modelling showed that reduced soil exploration by D. deltoides arose via either a root growth-dependent pathway (forb metabolome) or a root trait-dependent pathway (grass metabolome). Reduced root foraging was not connected to a decrease in total N uptake. Our findings reveal that soil chemical legacies can create belowground priority effects by affecting root foraging in later arriving plants.


Assuntos
Dianthus/fisiologia , Festuca/fisiologia , Raízes de Plantas/fisiologia , Solo , Biomassa , Dianthus/crescimento & desenvolvimento , Ecologia , Festuca/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química
7.
Plant Environ Interact ; 2(4): 194-205, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37283701

RESUMO

Aims: Although different plant foraging responses to the two macronutrients nitrogen (N) and phosphorus (P) are well researched, the effect of timing of fertilizer application on root system architecture (RSA) remains largely unknown. We, therefore, aimed to understand how RSA of Hordeum vulgare L. responds to timing of N and P application. Methods: Plants were grown in rhizoboxes for 38 days in nutrient-poor soil and watered with nutrient solution, lacking either N or P, with the absent nutrient applied once either 2/3/4 weeks after sowing. Positive controls were continuously receiving N and P and a negative control receiving both N and P only after 3 weeks. We tracked root growth over time, measured plant biomass and nutrient uptake. Results: Late N application strongly reduced total root biomass and visible root length compared with continuous NP and late P application. Root mass fractions (total root biomass/total plant biomass) remained similar over all treatments, but relative allocation (% of total root biomass) was higher in lower depth with late N application. Shoot P concentrations remained relatively stable, but the plants receiving P later had higher N concentrations. Conclusions: Late N application had overall more negative effects on early plant growth compared with late P. We propose that future studies under field conditions should try to disentangle the effect of timing from the nutrient availability on RSA responses and hence ultimately plant performance.

8.
Trends Ecol Evol ; 36(1): 20-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958364

RESUMO

The United Nations (UN) recently declared 2021 to 2030 the Decade on Ecosystem Restoration. Against this background, we review recent social-ecological systems research and summarize key themes that could help to improve ecosystem restoration in dynamic social contexts. The themes relate to resilience and adaptability, ecosystem stewardship and navigation of change, relational values, the coevolution of human and ecological systems, long-range social-ecological connections, and leverage points for transformation. We recommend two cross-cutting new research foci; namely: (i) post hoc cross-sectional assessments of social-ecological restoration projects; and (ii) transdisciplinary social-ecological 'living labs' that accompany new restoration projects as they unfold. With global agendas increasingly taking a social-ecological perspective, the recasting of ecosystem restoration as a social-ecological endeavor offers exciting new opportunities for both research and practice.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Estudos Transversais , Humanos , Meio Social , Nações Unidas
9.
Oecologia ; 191(3): 657-671, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31578613

RESUMO

The exotic South African ragwort (Senecio inaequidens DC.) rapidly spread across Central Europe after its introduction, but we still do not know to what extent its timing of arrival in a plant community (i.e. before or after natives) and the composition of the native community being invaded affect (1) its capacity to invade a European grassland, (2) the performance of the native species, and (3) the direction and strength of priority effects. In a greenhouse experiment, we manipulated the timing of arrival of the exotic species (Senecio) and the composition of the native community to test the influence of these factors on the productivity and N content of exotic and native species. We also investigated if the plant species origin (native or exotic) and the native community composition affected the benefit of arriving early and the cost of arriving late in the community. The establishment success of Senecio strongly depended on its timing of arrival in a grassland community. Senecio benefited more from arriving early than did the natives. The presence of legumes in the community did not favour invasion by Senecio. When natives arrived later than Senecio, however, priority effects were weaker when legumes were part of the native community. Our results showed that inhibitory priority effects created by natives can lower the risk of invasion by Senecio. An early arrival of this species at a site with low native species abundance is a scenario that could favour invasion.


Assuntos
Fabaceae , Senécio , Ecossistema , Europa (Continente) , Pradaria , Espécies Introduzidas
10.
Science ; 366(6463)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624182

RESUMO

Bastin et al's estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.


Assuntos
Solo , Árvores , Carbono , Sequestro de Carbono , Mudança Climática
11.
Sci Rep ; 9(1): 9561, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266970

RESUMO

Synthetic fertilizer production is associated with a high environmental footprint, as compounds typically dissolve rapidly leaching emissions to the atmosphere or surface waters. We tested two recovered nutrients with slower release patterns, as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in juvenile tomato plants. Plant performance was significantly improved when organic fertilizer was provided, promoting higher shoot biomass. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed distinct root microbial community structure when different fertilizers were supplied. However, plant presence significantly increased the similarity of the microbial community over time, regardless of fertilization. Additionally, the presence of the plant significantly reduced the potential ammonia oxidation rates, implying a possible role of the rhizosheath microbiome or nitrification inhibition by the plant. Our results indicate that nitrifying community members are impacted by the type of fertilizer used, while tomato plants influenced the potential ammonia-oxidizing activity of nitrogen-related rhizospheric microbial communities. These novel insights on interactions between recovered fertilizers, plant and associated microbes can contribute to develop sustainable crop production systems.


Assuntos
Fertilizantes , Microbiota , Microbiologia do Solo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Amônia/química , Amônia/metabolismo , Biomassa , Meios de Cultura , Concentração de Íons de Hidrogênio , Oxirredução , Desenvolvimento Vegetal
12.
Front Plant Sci ; 9: 1095, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131816

RESUMO

Improving fertility of marginal soils for the sustainable production of biomass is a strategy for reducing land use conflicts between food and energy crops. Digestates can be used as fertilizer and for soil amelioration. In order to promote plant growth and reduce potential adverse effects on roots because of broadcast digestate fertilization, we propose to apply local digestate depots placed into the rhizosphere. We grew Sida hermaphrodita in large mesocosms outdoors for three growing seasons and in rhizotrons in the greenhouse for 3 months both filled with marginal substrate, including multiple sampling dates. We compared digestate broadcast application with digestate depot fertilization and a mineral fertilizer control. We show that depot fertilization promotes a deep reaching root system of S. hermaphrodita seedlings followed by the formation of a dense root cluster around the depot-fertilized zone, resulting in a fivefold increased biomass yield. Temporal adverse effects on root growth were linked to high initial concentrations of ammonium and nitrite in the rhizosphere in either fertilizer application, followed by a high biomass increase after its microbial conversion to nitrate. We conclude that digestate depot fertilization can contribute to an improved cultivation of perennial energy-crops on marginal soils.

13.
Front Plant Sci ; 9: 905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013587

RESUMO

The cultivation of perennial biomass plants on marginal soils can serve as a sustainable alternative to conventional biomass production via annual cultures on fertile soils. Sida hermaphrodita is a promising species to be cultivated in an extensive cropping system on marginal soils in combination with organic fertilization using biogas digestates. In order to enrich this cropping system with nitrogen (N) and to increase overall soil fertility of the production system, we tested the potential of intercropping with leguminous species. In a 3-year outdoor mesocosm study, we intercropped established S. hermaphrodita plants with the perennial legume species Trifolium pratense, T. repens, Melilotus albus, and Medicago sativa individually to study their effects on plant biomass yields, soil N, and above ground biomass N. As a control for intercropping, we used a commercial grass mixture without N2-fixing species as well as a no-intercropping treatment. Results indicate that intercropping in all intercropping treatments increased the total biomass yield, however, grass species competed with S. hermaphrodita for N more strongly than legumes. Legumes enriched the cropping system with fixed atmospheric nitrogen (N2) and legume facilitation effects varied between the legume species. T. pratense increased the biomass yield of S. hermaphrodita and increased the total biomass yield per mesocosm by 300%. Further, the total above ground biomass of S. hermaphrodita and T. pratense contained seven times more N compared to the mono-cropped S. hermaphrodita. T. repens also contributed highly to N facilitation. We conclude that intercropping of legumes, especially T. pratense and T. repens can stimulate the yield of S. hermaphrodita on marginal soils for sustainable plant biomass production.

14.
Front Plant Sci ; 9: 912, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018627

RESUMO

Nitrate leaching is a pressing environmental problem in intensive agriculture. Especially after the crop harvest, leaching risk is greatest due to decomposing plant residues, and low plant nutrient uptake and evapotranspiration. The specific crop also matters: grain legumes and canola commonly result in more leftover N than the following winter crop can take up before spring. Addition of a high carbon amendment (HCA) could potentially immobilize N after harvest. We set up a 2-year mesocosm experiment to test the effects of N fertilization (40 or 160 kg N/ha), HCA addition (no HCA, wheat straw, or sawdust), and precrop plant functional group identity on winter barley yield and soil C/N ratio. Four spring precrops were sown before winter barley (white lupine, faba bean, spring canola, spring barley), which were selected based on a functional group approach (colonization by arbuscular mycorrhizal fungi [AMF] and/or N2-fixing bacteria). We also measured a subset of faba bean and spring barley for leaching over winter after harvest. As expected, N fertilization had the largest effect on winter barley yield, but precrop functional identity also significantly affected the outcome. The non-AMF precrops white lupine and canola had on average a positive effect on yield compared to the AMF precrops spring barley and faba bean under high N (23% increase). Under low N, we found only a small precrop effect. Sawdust significantly reduced the yield compared to the control or wheat straw under either N level. HCAs reduced nitrate leaching over winter, but only when faba bean was sown as a precrop. In our setup, short-term immobilization of N by HCA addition after harvest seems difficult to achieve. However, other effects such as an increase in SOM or nutrient retention could play a positive role in the long term. Contrary to the commonly found positive effect of AMF colonization, winter barley showed a greater yield when it followed a non-AMF precrop under high fertilization. This could be due to shifts of the agricultural AMF community toward parasitism.

15.
Oecologia ; 187(3): 825-837, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748934

RESUMO

Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.


Assuntos
Fagus , Árvores , Mudança Climática , Ecossistema , Florestas
16.
Methods Mol Biol ; 1761: 3-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525945

RESUMO

In this chapter, we present methods that we routinely use to measure plant root traits in the field and under controlled environmental conditions (using rhizoboxes). We describe procedures to (1) collect, wash, and store root samples, (2) acquire images of washed root samples, and (3) measure root traits using image analysis. In addition, we also describe sampling methods for studying belowground productivity, soil exploration, and root distribution in the first soil layers at the community level (soil coring and ingrowth core method). Because the use of rhizoboxes allows a nondestructive and dynamic measurement of traits hardly accessible in the field, a section of this chapter is devoted to the acquisition and analysis of images of roots growing in rhizoboxes.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Fenótipo , Solo
17.
Nat Ecol Evol ; 2(1): 44-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29180710

RESUMO

Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species.


Assuntos
Biodiversidade , Pradaria , Conservação dos Recursos Naturais , Alemanha , Modelos Biológicos , Plantas
18.
Front Plant Sci ; 7: 944, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446171

RESUMO

Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a modifier of root architecture and that root traits and their utility in breeding for greater productivity have to be understood in the context of high sowing densities.

19.
Front Plant Sci ; 7: 2008, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119707

RESUMO

Diversity of species and order of arrival can have strong effects on ecosystem functioning and community composition, but these two have rarely been explicitly combined in experimental setups. We measured the effects of both species diversity and order of arrival on ecosystem function and community composition in a grassland field experiment, thus combining biodiversity and assembly approaches. We studied the effect of order of arrival of three plant functional groups (PFGs: grasses, legumes, and non-leguminous forbs) and of sowing low and high diversity seed mixtures (9 or 21 species) on species composition and aboveground biomass. The experiment was set up in two different soil types. Differences in PFG order of arrival affected the biomass, the number of species and community composition. As expected, we found higher aboveground biomass when sowing legumes before the other PFGs, but this effect was not continuous over time. We did not find a positive effect of sown diversity on aboveground biomass (even if it influenced species richness as expected). No interaction were found between the two studied factors. We found that sowing legumes first may be a good method for increasing productivity whilst maintaining diversity of central European grasslands, although the potential for long-lasting effects needs further study. In addition, the mechanisms behind the non-continuous priority effects we found need to be further researched, taking weather and plant-soil feedbacks into account.

20.
PLoS One ; 9(1): e86906, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497995

RESUMO

Priority effects occur when species that arrive first in a habitat significantly affect the establishment, growth, or reproduction of species arriving later and thus affect functioning of communities. However, we know little about how the timing of arrival of functionally different species may alter structure and function during assembly. Even less is known about how plant density might interact with initial assembly. In a greenhouse experiment legumes, grasses or forbs were sown a number of weeks before the other two plant functional types were sown (PFT) in combination with a sowing density treatment. Legumes, grasses or non-legume forbs were sown first at three different density levels followed by sowing of the remaining PFTs after three or six-weeks. We found that the order of arrival of different plant functional types had a much stronger influence on aboveground productivity than sowing density or interval between the sowing events. The sowing of legumes before the other PFTs produced the highest aboveground biomass. The larger sowing interval led to higher asymmetric competition, with highest dominance of the PFT sown first. It seems that legumes were better able to get a head-start and be productive before the later groups arrived, but that their traits allowed for better subsequent establishment of non-legume PFTs. Our study indicates that the manipulation of the order of arrival can create priority effects which favour functional groups of plants differently and thus induce different assembly routes and affect community composition and functioning.


Assuntos
Ecossistema , Fabaceae/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Amônia/metabolismo , Análise de Variância , Biomassa , Ambiente Controlado , Fabaceae/classificação , Nitratos/metabolismo , Nitrilas/metabolismo , Fosfatos/metabolismo , Plantas Daninhas/classificação , Poaceae/classificação , Densidade Demográfica , Dinâmica Populacional , Potássio/metabolismo , Solo/química , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...